A Radiolabeled Fully Human Antibody to Human Aspartyl (Asparaginyl) β-Hydroxylase Is a Promising Agent for Imaging and Therapy of Metastatic Breast Cancer.
نویسندگان
چکیده
There is a need for novel effective and safe therapies for metastatic breast cancer based on targeting tumor-specific molecular markers of cancer. Human aspartyl (asparaginyl) β-hydroxylase (HAAH) is a highly conserved enzyme that hydroxylates epidermal growth factor-like domains in transformation-associated proteins and is overexpressed in a variety of cancers, including breast cancer. A fully human monoclonal antibody (mAb) PAN-622 has been developed to HAAH. In this study, they describe the development of PAN-622 mAb as an agent for imaging and radioimmunotherapy of metastatic breast cancer. PAN-622 was conjugated to several ligands such as DOTA, CHXA″, and DTPA to enable subsequent radiolabeling and its immunoreactivity was evaluated by an HAAH-specific enzyme-linked immunosorbent assay and binding to the HAAH-positive cells. As a result, DTPA-PAN-622 was chosen to investigate biodistribution in healthy CD-1 female mice and 4T1 mammary tumor-bearing BALB/c mice. The 111In-DTPA-pan622 mAb concentrated in the primary tumors and to some degree in lung metastases as shown by SPECT/CT and Cherenkov imaging. A pilot therapy study with 213Bi-DTPA-PAN-622 demonstrated a significant effect on the primary tumor. The authors concluded that human mAb PAN-622 to HAAH is a promising reagent for development of imaging and possible therapeutic agents for the treatment of metastatic breast cancer.
منابع مشابه
Monoclonal Antibodies as Therapeutic Agents: Advances and Challenges
Despite the major advances in conventional forms of treatment (i.e. surgical techniques, radiotherapy and chemotherapy) and improved survival rates, cancer is still the second leading cause of death in developing countries. One major limitation of cytotoxic drugs and radiation in the treatment of cancer patients is their inability to discriminate between malignant and normal tissues. This in tu...
متن کاملBiological assessment and human absorbed dose estimation of [111In]In-DTPA-antiMUC1 as a radioimmunoconjugate for breast cancer imaging
Introduction: The aim of this study was to evaluate the human organ absorbed dose of [111In]In-DTPA-antiMUC1, as a newly developed radioimmunoconjugate. Methods: [111In]In-DTPA-antiMUC1 was prepared at optimized conditions while the radiochemical purity of the tracer was investigated using ITLC method. Biodistribution of the radiolab...
متن کاملPreparation and preliminary studies of [64Cu]-antiMUC-1 for breast cancer targeting
PR81 is a monoclonal antibody that binds with high affinity to MUC1 that over expressed on breast tumors. PR81 is considered a suitable targeting molecule that was radiolabeled using Cu-64 for positron imaging studies. The monoclonal antibody was conjugated with DOTA moiety and after purification was evaluated for radiochemical purity, immunoreactivity, cell toxicity and structure integrity as ...
متن کاملConstruction of Human Recombinant ScFv Phage Libraries from the Advanced Stages of Breast Carcinoma Patients
Advances in the field of antibody engineering, and the emergence of powerful screening technology such as filamentous phage display allowed to generate fully human antibodies with high affinities against virtually any desired target from immune or even naIve human repertoires. As a result, the immunogenicity problems related to applications of nonhuman based recombinant antibodies as therapeuti...
متن کاملThe aspartyl (asparaginyl) beta-hydroxylase in carcinomas.
Aspartyl-(asparaginyl)-β-hydroxylase (AAH) is a member of the α-ketoglutarate-dependent dioxygenase family that catalyzes the hydroxylation of aspartyl and asparaginyl residues epidermal growth factor (EGF)-like domains of protein. In human tumorous cell lines from main systems of body, including tumor cells of kidney, throat, breast, liver, bladder, cervical and ovary, the AAH can be detected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer biotherapy & radiopharmaceuticals
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2017